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Abstract

The central limit theorem is a fundamental result in probability theory that
describes the behavior of a collection of independent and identically distributed
random variables. Specifically, it states that the sum (or mean) of these variables
tends towards a normal distribution, even if the individual variables themselves
do not follow a normal distribution. While the central limit theorem has been
known for over a century, the methods used to prove it have evolved over time.
One such method is known as the Lindeberg Method, which was first introduced
by the Swedish mathematician Harald Cramér in the 1920s. Cramér’s student,
H. C. Lindeberg, further developed the method in a series of three papers pub-
lished between 1920 and 1922. Lindeberg’s approach is notable for its simplicity
and elegance, making it accessible and easy to understand even for those new to
the field. In recent years, there has been a resurgence of interest in the Lindeberg
Method, driven in part by its broad applicability to a range of fields including
random matrices, high-dimensional Gaussian approximations, and more. In this
paper, we provide a comprehensive overview of the Lindeberg Method, includ-
ing its history, key concepts, and applications. Additionally, we examine recent
advancements that have expanded the scope of the Lindeberg Method and opened
up exciting new research directions. We hope that this paper will serve as a
valuable resource for researchers and students interested in probability theory,
statistics, and related fields.

Keywords: Lindeberg Methods, Random Matrix Theory, Gaussian Approximation,
Central Limit Theorem, High-Dimensional Probability, Berry-Esséen Bound, Limit
Theorem
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1 Introduction

The term, central limit theorem, has been consistently used since the work [19] by
Georg Pélya in 1920’s entitled On the central limit theorem of probability calculation
and the moment problem whenever Gaussian density occurs as a limit distribution in
a stochastic model. Pélya’s phrasing highlights the fundamental meaning of this group
of limit theorems.

In probability theory, the term ”central” refers to the behavior of the distribution
center in a random model. This concept is especially significant when considering the
central limit theorem, which pertains to the properties of partial sums of indepen-
dent random variables. After removing outliers, these sums exhibit a Gaussian limit
distribution, where the behavior of the distribution center plays a crucial role.

The central limit theorem is of fundamental importance not just in probability
theory, but in many fields that rely on statistical methods. Its significance lies in its
ability to describe the behavior of averages, or more generally, linear combinations
of independent random variables. A crucial aspect of the central limit theorem is the
notion of the distribution center, also known as a central tendency. This refers to the
symmetric point around which the distribution is centered and represents the most
probable outcome. Conversely, the behavior of the distribution’s tails is relatively less
consequential since extreme values have a minimal impact on the overall distribution.
In contemporary probability theory, the focus primarily revolves around comprehend-
ing the behavior of the distribution center concerning the central limit theorem. This
enables us to gain a better understanding of the distribution’s properties as a whole,
leading to more effective analysis and modeling of complex systems.

The central limit theorem has a fascinating historical background. The initial ver-
sion of this theorem was proposed by the French mathematician Abraham de Moivre,
who published a remarkable article in 1733. In his work, he utilized the normal distri-
bution to approximate the distribution of the number of heads obtained from multiple
coin tosses. Despite its groundbreaking nature, De Moivre’s discovery was nearly
forgotten until it was revived by the renowned French mathematician Pierre-Simon
Laplace. Laplace further developed De Moivre’s work by approximating the binomial
distribution with the normal distribution. However, it was not until the late nineteenth
century that the true significance of the central limit theorem became apparent. In
1901, the Russian mathematician Aleksandr Lyapunov provided a general definition
of the theorem and offered precise mathematical proof of its workings. Since then,
the central limit theorem has been recognized as a cornerstone of probability theory,
holding immense importance in the field.

The Lyapunov condition also satisfies the Lindeberg condition and, consequently,
the central limit theorem’s validity follows. Lyapunov used the characteristic function
as a methodology to prove probability theory, but his work remained unknown outside
of Russia for a prolonged period. Subsequently, the historical narrative transitions to
Lindeberg’s contribution, whose method of proof was impressively straightforward.

The Finnish mathematician, Earl Waldemar Lindeberg (1876-1932), was born and
raised in Helsinki. He was educated at the University of Helsinki and Paris and spe-
cialized in studying partial differential equations, ultimately earning his doctorate in
1902. When composing his first work [14] on the central limit theorem 1920, he did



not know the results of Lyapunov but did know the weaker results of von Mises. In
1922 Lindeberg wrote the works [15, 16] in which his method and the condition named
after him were fully developed.

Paul Lévy wrote 1925 his famous book Calcul des probabiliés, in which he presented
a particular form of Lindeberg’s proof. However, Lévy decisively relied on characteristic
functions, similar to Lyapunov’s approach. This could be the reason why the Lindeberg
method found limited representation in some traditional textbooks. An extension of
Lindeberg’s Central Limit Theorem, known as the Feller condition, was later proven
by Feller himself. Feller hypothesized that Lévy’s proof substituted the Lindeberg
method with the utilization of Fourier theory. Le Cam’s appreciation of the Lindeberg
Method in [13] and Pollard’s comment on it at the end of the article [13] are impressive.
Pollard concludes his comment that Lindeberg’s argument still has something to offer.

From Laplace to the mid-20th century, the Central Limit Theorem (CLT) has
played a crucial role in bridging various cultural and intellectual aspects of probabil-
ity theory. In classical probability theory, the CLT served as a "natural law,” offering
insights into the order inherent in the normal distribution amidst the complex inter-
play of individual random variables. During the mid-19th century, the CLT gained
increasing mathematical significance, initially serving as an illustration of specific ana-
lytical theories and techniques. Subsequently, with Lyapunov’s contributions, the CLT
underwent a transformation into an independent mathematical concept studied for its
intrinsic value, with implications for other branches of mathematics.

While preserving the fundamental classical structures such as the independence
of added random variables, the CLT was occasionally generalized to encompass non-
normal limit laws and weakened forms of independence. Consequently, it became a
subject of enduring interest in modern mathematics. It is therefore intriguing to note
that, after nearly a century, the Lindeberg Method, which existed in the past, is
experiencing a renaissance. In the following chapters, we delve into this exciting revival
and explore its implications.

In Chapter 2, we present the original Lindeberg method for calculating partial
sums of independent random variables. Despite its simplicity, this method is often
overlooked in many textbooks. We strongly encourage readers to explore the Lindeberg
proof method, not only for its elegance but also for the potential modifications it offers,
which can provide deeper insights beyond the original approach.

Chapter 3 provides examples of random partial sums and martingales, illustrating
the evolution and extension of the Lindeberg method in various application fields.

Moving forward, Chapter 4 focuses on the remarkable work of Chatterjee, while
Chapter 5 is dedicated to the groundbreaking findings of Tao and Vu in the field of
random matrix theory. These chapters highlight significant advancements that have
built upon Lindeberg’s method, showcasing its enduring intellectual influence.

In Chapter 6, we delve into the major breakthroughs in multivariate Berry-Esséen
bounds, starting with Bentkus’ contributions. Chernozhukov and others have made
a remarkable discovery by demonstrating that a specific class of hyperrectangles can
significantly limit the corresponding distance at a logarithmic rate, which depends on
p. These works are deeply rooted in Lindeberg’s method and further underscore his
enduring intellectual legacy.



2 Primitive Approach in Lindeberg’s works

2.1 Proof of the classical Central Limit Theorem

We will now introduce Lindeberg’s elegant proof method in the simplest sce-
nario of probability theory, which involves real-valued independent random variables
X1, Xa, - -. To simplify our analysis, we assume E(X;) = 0 without loss of generality.
Also, denote ®(x) is the cumulative distribution function of a normal random vari-
able, and ¢(z) is the probability density function of it, i.e. ®(z) = ffoo o(y)dy and

p(z) = 7= exp (—2°/2).

We also denote the variance of the random variable X; with o? = E[(X; — EX;)?].
Then, due to the assumed independence of the random variable, the variance of
iy Xiis By =31, of. Also denote W, = - >0 Xi.

The question of the validity of a central limit theorem in this situation is the
question of the conditions attached to the random variable X, s.t.

1 n
—SN'x, 2z (1)
By, ¢

i=1
where Z ~ 47(0,1).

We note that E(W,,) = 0 since every X; is a centered random variable, and
E(W?2) = 1 since the scaling factor, so the random variable W,, for each n > 1 in
the first two moments E(W,,) and E(W?2) correspond to the moments of the canonical
Gaussian distribution. We’ll come back to this moment matching later.

Specially, we first consider the case where the random variables X; have the same
distribution and assume variance E(X?) = E(X?) = 1. Then we have the well-known

fact that
Ly x 2 ®)
—Nx;, %z 2
Vi

Also, suppose Z1,Za, -+ , Z, are i.i.d. with the same distribution of .47(0,1) and
they are all independent of X7, X5, -+, X,,. Then we have

Lyztz 3)

and since we only consider the information of distribution, we can assume that equality
holds actually more than an equality in law. This is important that this observation
is a characteristic property of the normal distribution.

Lindeberg’s method, as proposed, entails a progressive substitution of the sum-
mands X; in the sum W,, with normally distributed variables Z;. This substitution
facilitates the approximation of the sum by Z and leads to a concise proof of the cen-
tral limit theorem. What’s more, Lindeberg’s approach enables the extension of the
central limit theorem to non-identically distributed random variables, provided that
they adhere to the condition named after Lindeberg himself.
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Fig. 1 Smooth approximation to an indicator function

A small technical preparation is the following: we write P(W,, < z) = E(1{W,, <
x}) with the notation of the indicator function 1{W,, < x}, which assumes the value
1 on the event W,, < x and otherwise the value 0. We want to show that

Jim E(1{W, <a}) =E({Z <a}), (4)

For this purpose, we approximate the indicator function 1(—o0, ] by a sufficiently
smooth function f. To achieve our goals, it is sufficient to choose an f which is three
times differentiable and whose derivatives are constant and limited. These test func-
tions always exist by a mollifier convolution, and we can select one such function,
as illustrated in the image below 1. Also, by the Portmanteau Theorem, for such a
class consisting of all f, the weak convergence is equivalent to the convergence of
expectation over this class, i.e., it suffices to show that

lim Ef(W,) =Ef(Z) (5)

n— oo

Define a function as a type of Taylor remaining terms

g(t) =sup {f(z+1t) — f(z) — f(x)t — 1/2f" (2)t*}, (6)

z€R

we know it can be easily bounded by Taylor expansion. As a result, there exists some
constant K > 0 depending on the global supreme of some derivatives of f such that

g(t) < Kt* A t]?, (7)
thus

[f(z+t1) = flz +t2) = f/(2)(ts — t2) = 1/2f" (1] = £3)] < g(t1) + g(t2).  (8)



Now, turns back to our original topic. We define

yk_zx LYz, (9)

j=k+1

Y, + X,) = W,, and -=(Y; + Z;) = Z. As a result, we can approach it

1
then ﬁ ( v

step-by-step:

E(f(W,) - /(Z)) =E (f(\}(yn X)) -

e ( L i+ x) - f(jﬁmwi))) (11)

Vi + Zm) (10)

Now we note that for all 4, Y; is independent of X; and Z;, so

E(f(ZY)(=(Xi=2)) ) =E{ f(=Y) | E{ =(Xi=Z) ). (12)
vl 7)= (G

The above term is zero because E(X;) = E(Z;) = 0. For a similar reason,

R AV < I A
E (f (G2 1) (X Z»)) 0. (13)

Now we can bring in the control over the remaining terms:

1
E(f(W. ( SR+ X0) — (= (i 4 20) (14)
#'(inmin(& -z - )| )
<32 (o T+l 57;)) (16)
1 Z

— nE (g< ﬂ) R (gv)) (17)

We apply the estimate for g and get by decomposition of the integral

E( (\ﬂ) <K (/X1<€f|f|3dP+/xl>ef o dP) (18)

and notice that

3qp < / x2p < £ 19
/ |<Ef|f| X<y (19)



X, )
nE(g(\/ﬁ)) <K< /lexﬁdeP) (20)

And {|X1] > ey/n} decreases monotonically to an empty set. By the monotone
convergence theorem, and by the arbitrary of € > 0, we can conclude nE(g( f)) tends
to 0. For the case of Y, it is almost the same, and we just need to replace all X with
Y. That finishes our proof.

2.2 Some Advantages of Lindeberg’s Approach

Upon closer examination of the aforementioned proof, it becomes evident that the
assumption of identically distributed random variables is not essential. Through
the presented arguments, we unveil the second crucial observation made by Linde-
berg, known as the Lindeberg condition. If the random variables are not distributed
identically, we still have

E(/(W,) — £(2))] < ZE(

Here the Z; are independent, normally distributed random variables with expec-
tation value 0 and variance 2. Using the identical integral decomposition allows for
the estimation of the following result:

ZE( ) KZ/ Xi|<ev/Br F‘gdP+KZ/ Xi|>ev/Br F'z

The first term can now be estimated analogously by Ke. For the second term, we
have to demand that this expression converges towards zero for n — oo, and this is
exactly the Lindeberg condition. If we then show that the Gaussian variables Z; fulfill
this condition, which we do not explain here because it is easy to compute and do
some estimation and Gaussian random variables’ tail density decays very fast, we have
proven the Lindeberg Central Limit Theorem:

Theorem 1 (Lindeberg Central Limit Theorem, 1922). There are independent, real-
value random variables X1, Xo,--+ with E(X;) = 0 and 0? = E(X2) > 0 for each i.
Assume Z ~ A(0,1). If

Z;
T m)) (21)

lim — / X2dP =0 (22)
n—oo B2 Z X;|>evBn

applies for all € > 0, then we have

1 <& D
B > Xi = Z. (23)
1=1



It’s worth mentioning that William Feller proved in [11] that a kind of inversion
of Lindeberg’s theorem applies. Assuming that

B 24
Il?ggak/ n — 0, (24)

then Lindeberg Condition can be both sufficient and necessary.

An additional analysis of the preceding proof reveals that the Lindeberg method
provides information regarding the convergence rate in the central limit theorem. In
this regard, we will focus solely on the specific scenario of identically distributed ran-
dom variables X;. In fact, in his first work in 1920’s [14], Lindeberg placed a stronger
condition on the random variable X;. He demanded the third absolute moment E|X;|?
is finite for each X;. Only in the works from 1922 [16] did he weaken this condition to
the above condition.

To be more concise, if we look at the special case of identically distributed random
variables and assume E|X;|? < oo, then we can estimate the error term by

X K

IEg(\/ﬁ) < ﬁE\Xllg (25)
and )
[E(f(Wy) = [(2))] = KO(—=E|X1*) (26)

vn
where K is larger than || f"|| by our construction of g.

We notice that (26) is a weak version of a convergence rate in the sense of the
theory of Berry and Esséen. Weak means that this result for the described test function
class does not imply the supreme of difference between two distribution functions is
also in the order of n='/2. However, it is known that the optimal convergence rate for
the Kolmogorov distance in our situation is O(n~'/2). This is called the Berry Esséen
rate. We will return to that in Chapter 3.

Furthermore, it is clear that by considering higher-order terms in the Taylor expan-
sion of f and ensuring the finiteness and alignment of the higher moments of X; with
those of Z;, we can improve the convergence rate. This aspect will play a crucial role in
our exploration of the theory of random matrices and high-dimensional assumptions
in subsequent chapters.

Ultimately, one may ponder why the central limit theorem exclusively yields the
normal distribution as the limit distribution. It is apparent that when independent
random variables themselves follow a normal distribution, their sum also follows a nor-
mal distribution. This property, referred to as the unlimited divisibility of the normal
distribution in literature, is well-known. However, it is worth noting that there exists
a class of distributions that share this property, including the normal distribution. So,
what sets the normal distribution apart and renders it dominant in this context? It
is important that with the above Z; the random variable % 2?21 Z; is redistributed

A4(0,1), i.e. on the distribution level and the selected scale % the A47(0,1) is a fixed

point of the map (X1, -+, X,,) — ﬁ >, X;. Its outstanding role results in a certain
sense from the fact that it is the only such fixed point.



3 Martingale Central Limit Theorem

In modern probability theory, the term martingale has become quite essential. Initially,
the term was used only to formalize the idea of a fair game. Many sequences of
random variables are a martingale, such as the one-dimensional symmetrical error on
Z, partial sums of independent random variables as considered in Chapter 2, products
of independent random variables when the factors have expected value 1, sizes of
populations in various branching models, etc. The core of the definition of a martingale
is the concept of conditional expectation, we refer to a standard textbook Durrett’s
Chap. 4[10] for some background information.

Generally, (2, % ,P) is a probability space, and ¢ is a sub-o algebra of %#. Then
E(X|¥) to an integrable X denotes the random variable that is .#-measurable and

/AE(XM)dP:/AXdP (27)

applies to all A € 4. This random variable exists and is P-almost certainly uniquely
determined. Furthermore, for a sequence of random variables X;, %; = o(X1, -+, X})
is the o-algebra generated by the first ¢ random variables. Then (X;) is a martingale
with respect to %; if any X; is integrable and E(X;1|.%;) = X; almost surely holds.
It follows immediately that E(X;;;|.%;) = X, also applies to each j € N. The
definition of martingale can be equivalent to the definition of martingale differences
A; = X; — X;_1 that satisfies E(A;|%;) = 0 P-a.s.. So instead, we can construct a
martingale by using a martingale difference sequence, i.e. if X; is a martingale differ-
ence sequence with respect to .%; where .#; = o(X1,---, X;), then S, =Y 1 | X; is a
martingale with respect to .%,. We want to investigate the boundary behavior of the
martingale B,,. There are several results in Peter Hall’s book [12], for example, when
some types of Lindeberg condition are satisfied and the martingale difference sequence
has a consistent variance, then we have the asymptotic normality. We focus our inter-
est on the Berry-Esséen type bound of Martingale by using Lindeberg replacement
strategy, which was given by Bolthausen in [3]:
Theorem 2 (Bolthausen, 1982[3]). For 0 < a < f < 00, 0 < v < o0, and X;
is a martingale difference sequence. Denote 0? = E(X?|.%;_1) and 62 = E(X?), we
assume o7 = o7 a.s. hold for every i. Also, B2 := """ 7. Assume o < 52 < f3 and

| Xills <~ for all 1 < i < n, then we have

sup |IP’(% <t)—®(t)| < Ln~ M1 (28)

teR n

The outline of the presented proof suggests that it cannot achieve a convergence
rate better than n~'/4. However, compared to the rate for a partial sum of independent
and identically distributed random variables, as discussed in Chapter 2, this rate is
relatively weak. It is worth noting that Bolthausen has made an intriguing discovery,
demonstrating that this rate is indeed optimal in the case of a martingale. Although
we will not delve into the details here, as it diverges from our primary focus, this
finding adds an interesting perspective to our main topics.

10



Proof. In addition to X = (X1, --,X,) given as in the sentence, we consider inde-
pendent normally distributed centered random variables 71, --- , Z,, & with variances
E(22) = 0%, E(¢?) = V/n.

First of all, we will replace S, /By, with S, /B, +&/B,, i.e. we will add a Gaussian
variable & / B, With small variance; according to the premise of the theorem, ﬁ <

E(¢/B,)? < \ﬁ, and intuitively, this small perturbation should not have a huge
impact. Actually, there is a lemma from [3] that shows
Sn Sn & —1/4_—1/2
sup |P(== < t) — &(¢)| <23up\]P’(——|—f <) —P(t)|+en” . (29)
teR Bn B Bn

The lemma states that the error can be bounded by ||IE(B5 )2||é42 Now we push

]P’(Z%iiz + Bin < t) into it, and by the same lemma,

—|—i < t)\+cn_1/4a_1/2.

B,
(30)
with some absolute constant c. Now it can be done by the famous trick from Lindeberg.
For each 1 < k < n, denote

S, £
sup |P(— <t < 2sup |P <
sup [P < 6)-0(0)] < 2sup [P(5+45-

n o7
t)—P(Lgl

Zk:ll Xi Z k+1 §
= ==L [/[/ = 1
Uk B, = F B, “+ B, (81)
and split the difference into
L€ iz €
P <t) - P(=2 < 2
( n B 2 ( B, - B, ) (32)
= E (P(Ux + Wk + Xy/Bn <t) = P(Ux + Wi + Zi/Bn < 1)). (33)

A brilliant step follows: Bolthausen takes advantage of the fact that Wy is normally
distributed with expectation value 0 and variance A} = (37, 07)/Bz, so Wi /Ay is
normally distributed. Since W, is independent of Uy, X, and Zj, the above sum can

be written as
n

t — Uy X t— Uy Zy,
Ed — —E® — 34
> (me( S - g B ) 3

Notice that ® is basically a test function and we look at the Taylor expansion of
the last sum as usual with some 0 < 6y, 0;6 <1:

= X, Zy, t—Ug X}? zZ?2 ,(t= Uy
E((- - 35
kZ:l << B, Aan> v ( Ak ) " <2AiB% avBz) Y\ TN (35)
X]:;’ n(t—Ug X Zg’ u(t—Ug Zy,
oo’ \ v s Toemt (T s, (36)

11




In the case of independent random variables, the first two summands disappeared
because of independence and our assumptions. Here, we can argue with conditional
expectation values by regarding the first term as

) (50) ) @

Now U}, is measurable with respect to .%;_1, so it can be factored from the condi-
tional expectation. The first summand disappears because E(X|%#;_1) = 0, and the
second is obvious because of the independence. The same factorization argument can
be used and the second summand, where E(X?|.Z,_1) = 0%, and it is almost surely
equal to EZ7 = &7. Since ¢ and its derivatives are limited and maxi<;<, || X;[; < v
according to the premise, it follows overall

sup |P (Sn/Bn <t) — ®(t)| < CZ A2 BE 4 /A (38)
teR Pt

for constants ¢, ¢/, which depend only on «, 3, and . Now we can see the choice

of variance E¢? = \/n, because it guarantees the sum can be accurately controlled by
~1/4
n .

O

Once again, a straightforward yet elegant proof of the central limit theorem is pre-
sented, specifically in the context of a martingale setting. Remarkably, this proof also
yields an optimal convergence rate without requiring further justification. Few other
proof methods exhibit such elegance, making it highly recommended as an extension
of the Lindeberg Method. In fact, this can be seen as the foundation of the so-called
"implicit smoothing” method, which has been employed in numerous papers addressing
high-dimensional Gaussian approximation problems.

4 Lindeberg Method in Random Matrix Theory

4.1 Chatterjee’s Invariance Principle

The Lindeberg method’s robustness in the face of changes in the limit distribution, as
observed in Chapter 3, serves as the starting point for its far-reaching development in
the last fifteen years, which has rightly been described as its renaissance. This resur-
gence can be traced back to the works of Chatterjee [4, 5]. Chatterjee’s work makes a
significant innovation by considering the boundary distribution of more general func-
tions f of a random vector X = (X1, -+, X,,). This function can take the classical form
f(X) = ﬁ >, Xi, but it is not limited to this shape. Furthermore, even though the
limit vector is Gaussian in our most important example, now there is no requirement
for it to have a Gaussian structure. Chatterjee formulates the following statement.

Theorem 3 (Chatterjee, 2005[4]). Denote X = (X1,...,X,) and Y = (Y1,...,Y,)
are two independent vectors of independent random variables and satisfying that for

12



each i, EX; = BY; and EX? = EY? < 0o. Let v = max{E|X; |3, E[Y;[]>,1 <i < n} <
00.
Let f : R™ — R be thrice differentiable in each argument. If we set U = f(X) and
V = f(Y), then for any thrice differentiable g : R — R and any K > 0,

i=1

[Eg(U) — Eg(V)| < Ci(g)Xa(f) Y _[B(X]; X > K) + E(V; |[Yi| > K)] (39)
)As(

+ Ca(9)As(f) D_IE(X 1Xa| < K) + E(|Y % Y] < K)](40)

=1
where C1(g) = [|g'llsc + 9" lls and C2(g) = 519"l + 51l9" lloc + 519" lloo, and
A (f) = sup{|0Pf(x)["/P:1<i<n1<p<rxel'} (41)

As mentioned in Chapter 2, if we can choose a suitable K, we use E(|X;|3; | X;| <
K) < KE(X?) to control the error.

The function f in this sentence plays the same role as in Chapter 2. If you choose
f(X) = ﬁ S X, then it is easy to compute Ao(f) = n~! and A\3(f) = n~3/2.If
X;’s and Y;’s are i.i.d., and EX; = EY; = 0 and EX? = EY;? = 1 for all 4, then we
choosing K = €y/n and by Theorem 3:

RN TN
[Eg(—= Y Xi) —Eg(—= ) Yi)| < Ci(9)[E(XF;|X1| > ev/n) (42)
+ E(Y?2 V1] > ev/n)] +202(g9)e  (43)
As the number of terms, denoted by n, tends to infinity, the aforementioned result
establishes the classical Central Limit Theorem (CLT) since it holds true for all values

of e greater than zero. In addition to this fundamental result, if we have the additional
conditions that E|X:|> V E|Y;|? < 0o, we can derive an explicit error bound as well:

R N L Cy(g)[E| X1 + E[Y1 ]
|Eg(%;)ﬁ) Eg(\/ﬁ;YzﬂS NG (44)

Now we turn to the proof of this theorem.

Proof. We choose f and g to be fixed, let h = g o f. By the chain rule,

97h(x) = g'(f(x))97 f(x) + ¢" (f(x))(0:f (x))?, (45)
97h(x) = ¢'(f(x))0; f(x) +3¢" (f(x))0: f(x)0} f(x) + " (f(x))(0: f (x))°. (46)

So for every i and x, |0?h(x)] < Cid2(f) and |93h(x)| < 6CaA3(f), where C; =
l9'10e + llg" oo and C2 = Gllg" oo + 3119 lloe + §llg" loo-

13



Second, for 0 < i < n, we define Z; := (X1,...,X;-1,X;,Yit1,...,Y,) and W, :=
(X1,...,Xi-1,0,Y;41,...,Y,). For 1 <i <mn, define

R; == WMZ;) — X;0;h(W;) — %Xfafh(wi), (47)
T; == h(Zi_1) — Y;0;h(W;) — %Yfafh(w,-). (48)

By the bounds on the third partials of A, and using Taylor Expansion to the third
order, it is obvious that |R;| < CoAs(f)|X;|? and |T;| < Cas(f)|Y;[3. Also, we can use
the second order term to bound them by |R;| < Ci\a(f)|X;:|? and |T;| < Cih2(f)| V3%
For every i, X;, Y; and W; are independent. So

E(X:0:f(W;)) — E(Yi0: f(W;)) = E(X; — Y;)E(0:f(W;)) = 0. (49)
Similarly, E(X20? f(W,;)) —E(Y;?0? f(W,)) = 0. Combining all these results, for every
K >0,

[Eg(U) —Eg(V)| = ‘

Z E(h(Z;) — W(Zi-1)) ‘

n

S E(GOR(W,) + 3 X2 R(W:) + Ry)
i=1

- ZE(Yz&h(Wz) + %Yiza?h(wi) +T;)
i=1
< Cixe(f)Y ] [BE(XF; X > K) + E(Y Y| > K)
i=1
+ CoXs() D [E(X:1%1X:] < K) + E(Yi]% V] < K)] .

i=1
O

It is important to consider the benefits of such a generalization and the insights
it can provide. One particular application of interest lies in exploring Theorem 3,
which intersects with the field of random matrix theory, a prominent area within
modern probability theory. By delving into this application, we aim to deepen our
understanding and uncover the implications within this specialized domain.

4.2 Pastur’s Condition for Wigner’s semicircle law

A random matrix is a matrix that entries are real or complex random variables. We
focus on symmetric N x N matrix My. In this setting, we have a symmetric My =
(Xi,j)1<ij<n, where X, ;,i < j are i.i.d. random variables and X;;, = X, ;,i < j.
Obviously, their eigenvalues are all real and we can ask about their distribution. For
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the same reason as in the classical central limit theorem, we usually consider the scaled
o1
matrix WM N-
We define the empirical spectral distribution (ESD) of the eigenvalues A\ < --- <
Ay of ﬁM N as

Fi(t) = #(i: X < 1}

In his work [21], Wigner examined Bernoulli distributed variables X, ; and demon-
strated that Fy converges in probability to the renowned semicircle law with a density
function of 3-v/4 —z2 on the interval [—2,2]. He further recognized in [22] that this
result holds not only for normally distributed X; ; but also for other distributions. The
validity of the semicircle law for independent and identically distributed X; ; (under
appropriate moment conditions) was established by Arnold [1]. In the language of
physicists, the universality of the semicircle law was demonstrated by first identify-
ing laws applicable to specific distributions of Xj ;, typically assumed to be normally
distributed, and then investigating whether these laws depend on the specific distribu-
tion. Several studies have explored scenarios involving dependent X; ;. Our objective
is to investigate the conditions under which the Wigner semicircle law can be derived
as the limit distribution of Fiy from the X; ;. Through the application of Theorem 3,
we aim to uncover a suitable Lindeberg condition in this context.

A standard tool for identifying the limiting spectral distribution, i.e. LSD, of a
sequence of random matrices is the Stieltjes transform. To be short, we can say that
the ESDs of a sequence {An}¥_; of random real symmetric matrices converge in
probability to a probability distribution G if and only if

1

r—z

Vz € C\R, %Tr((AN —z2Iy)H L /Z dG(z)

where Iy is the identity matrix of order V. The expression on the right corresponds to
the Stieltjes transform of G at the point z, while the expression on the left corresponds
to the Stieltjes transform of the empirical spectral distribution (ESD) of Ay at z.
The Stieltjes transform plays a crucial role in our technique due to its remarkable
smoothness as a function of the matrix entries. This smoothness property makes it
highly advantageous for our analysis and application.

By employing the aforementioned techniques, we will showcase the effectiveness
of Pastur’s condition, which is recognized as the least stringent criterion known for
establishing convergence to the semicircle law. Through our analysis, we will demon-
strate the sufficiency of this condition and its significance in characterizing convergence
behavior.

To begin, let z = u + iv € C, where v # 0. Denote f : R” — R,

1 _
Fx) = 5 Tr((Alx) = 21) b.
And G : R® — CN*N G(x) := (A(x) — zI) . Note that all eigenvalues of A(x) € R,
so det(A(x) — zI) # 0. Furthermore, it is worth noting that in matrix theory, when
we perform matrix inversion, we compute the classical adjoint and divide it by the
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determinant. This process entails expressing the elements of the inverse as rational
functions of the elements of the original matrix. Consequently, the Stieltjes transform
G exhibits smoothness along each coordinate, owing to the rational nature of its
elements. This smoothness property is instrumental in our analysis and contributes to
the effectiveness of our approach.

Because (A(x) —zI)G(x) = I for every x,501 <3 <j <N, a%j[(A_ 2I)G] =0,
then 7

oG 0A

e
axm 81’1’]'

G. (50)
Similarly, higher order derivatives have the same property and take trace we have

of 1. 9A

_ 2
go, ~ N g G (51)
°f 2. 0A L 0A ,
Ox?; Nﬂ(axi7jGaxi7jG ), (52)
>*f 6, 0A ,0A L 0A
oa?, "~ e, %o, %02, ¢ (53)

Now we need to bound these terms. For an N x N complex matrix B = ((b; ;)), the
Frobenius norm of B is || Bl := (3, ; [bi,; |2)1/2. It’s easy to see that this norm satisfies
these canonical properties:

L | Te(BC)| < | BJ[[[C].

2. || - || has unitary invariance.

3. For a normal matrix B and its eigenvalues A1,...Ax, max{||BC|,||CB|} <
maxi<;<n |A;| - [|C|| holds for any C.

Note that G as well as the derivatives of A are normal matrices, and the eigenvalues
of G are bounded by |v|™! where v = Im 2. Also, the eigenvalues of dA/dz; ; are
bounded by N~'/2, because JA/Jx; ; is the matrix which only has non-zero term
N~12 at the (i,7) and (j,4) positions.

So the elements of G? are bounded by |v|~2. As a result,

H of < 2jv|2NT3/2, (54)
L35 |l oo
Similarly,
0% f 2 || 0A 0A o —3ar_9
= < 4 N~=
835121]- - N ‘ 83%‘] H 83%‘)]‘(; - ‘U| (55)
And,
3
H 0T < o-tn-s22 (56)
3xi7j .
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In summary,

o (f) < Amax{fo| % o] PINTZ, (57)
No(f) < 12max{le] S, o] PN /2, (58)
Let X = (X i<i<j<nv and Y = (Y;;)i<i<j<n which entries are independent

centered random variables with variance 1, we call this as normalization. Denote
U=Ref(X),V =Ref(Y), and g : R — R be a thrice differentiable function. Now
Re f is a smooth function and A,.(Re f) < \.(f) for each . Take K = /N, Theorem
3 can tell us that [Eg(U) —Eg(V)| can be bounded by a constant rate depending only
on g and v of

N2 N [B(X7;1X ] > eVN) + E(YV; Y| > eVN) +e (59)
1<i<j<N

The imaginary part is similar.

According to Wigner’s Theorem for Gaussian scenarios, we observe that conver-
gence to the semicircle law can occur when the random variables X; ; are independent,
centered, normalized, and satisfy the condition

Ve >0, lim N2 Y E(X7; Xl > eVN) =0. (60)

1<i<j<N

This condition precisely corresponds to Pastur’s condition. It is satisfied, for
instance, when the random variables X; ; are independent and identically distributed
(i.i.d.), centered, and normalized. It is important to note that although it may resemble
Lindeberg’s condition for the central limit theorem, it is not identical.

It is important to highlight that Theorem 3 has other intriguing applications, such
as in the theory of spin glasses and the study of the Sherrington-Kirkpatrick model.
These models hold great significance in modern probability theory. However, due to
the length constraints of this discussion, we will not delve into these applications here.

5 Moment Conditions in Random Matrix Theory

We recall the situation in Chapter 4. We have a symmetric matrix My :=
(Xi,j/\/ﬁ)léi,jSN where X; ; for ¢ < j are independent random variables. The semi-
circle law provides a universal limit distribution for the global statistics Fiv(t) :=
+#{i + A\; <t} under moment conditions.

Since the inception of random matrix analysis, numerous other statistics derived
from the random eigenvalues \; have been explored. One example is the distribution
of gaps between consecutive eigenvalues, which examines the frequency of occurrences
where A\;11 — \; < s for 1 < ¢ < N. Another area of interest is the correlation
among k eigenvalues in the limit, known as the k-point correlation function. Questions
regarding the distribution of individual eigenvalues and the limit distribution of the
joint distribution of k eigenvalues (A;,,-- -, A;,) also arise. These statistics fall under
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the category of local eigenvalue statistics, and their investigation tends to be more
complex than that of global statistics. Global statistics encompass quantities such as
the determinant of the matrix My or the count of eigenvalues \; that fall within a
given interval.

We now consider a N x N Wigner Hermitian matrix Wy = (X, ;)1<i j<n, which
is a Hermitian matrix with independent entries X; ; and X;; = X; ;. For i < j, the
entries X; ; are identically distributed and follow a centered and normalized complex
value distribution. When ¢ = j, the entries X, ; are equally distributed with an expec-
tation value of 0 and a variance of 2. The real and imaginary parts of the random
variables are independent. Additionally, there exists a constant C' independent of 4, j,
and N such that E| X |© < D for every i and j, where D is another constant indepen-
dent of 7, j, and N. To ensure that the eigenvalues of the matrix are within the interval
[—2, 2], we scale the matrix by My = ﬁWN. This scaling preserves the constrained

interval for the eigenvalues. Alternatively, if we scale the matrix by Ay = vV NWy,
the spacing between two eigenvalues remains roughly constant. It is important to note
that a special case of the Wigner Hermitian matrix arises when the entries are nor-
mally distributed. In this case, the diagonal entries are real random variables following
A(0,1) distribution, while the off-diagonal entries are complex random variables fol-
lowing .47(0,1/2) +i.47(0,1/2) distribution. This ensemble is known as the Gaussian
Unitary Ensemble (GUE) because the distribution of Wy remains invariant under
unitary matrix conjugation. The main advantage of the GUE is that the common
distribution of unordered eigenvalues can be expressed by Ginibre’s formula

N
_ -1 2 1 2
o A =2y I =l exp(—ﬁ;m (61)

1<i<j<N

where Zp is a suitable standardization so-called partition function. In recent years,
several studies have utilized Ginibre’s formula to explore the limiting distribution
of different local statistics associated with the eigenvalues of the Gaussian Unitary
Ensemble (GUE). These investigations have employed various techniques, such as
determinant point processes and orthogonal polynomial methods, to analyze the dis-
tribution. Although the details of these techniques are beyond the scope of this
discussion, they have played a significant role in advancing our understanding of the
GUE’s eigenvalue statistics.

Here are some notable results for GUE matrices. The smallest eigenvalue of a
GUE matrix, denoted by A\;(My), converges to the Tracy-Widom distribution. More
precisely, (A;(My) + 2)N?/3 converges to this distribution, which is a well-known
probability distribution. Let Ny(Mpy) be the number of eigenvalues of the GUE matrix
My that lie in the interval I. If Var(N;(My)) tends to infinity as N — oo, then the
standardized random variable (N;(My)—E(N;(My)))/+/ Var(Ni(My)) approaches a
standard normally distributed random variable. Locally, for a sequence k(N) such that
k(N)/N converges to a constant ¢ in the range (0,1) as N — oo, the random variable
(A (N) — a(k(N)))/B(k(N)) converges to a standard normally distributed random
variable. Here, a(k(N)) and B(k(NN)) are suitable scales that indicate the expected
location and standard deviation of A\, (IV), respectively. These results provide valuable
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insights into the behavior of eigenvalues in GUE matrices and their convergence to
specific probability distributions.

For a considerable time, there has been a belief that the aforementioned distribu-
tion laws, along with many others, hold universally not only for Wigner Hermitian
matrices but also for broader classes of matrices. Proving this universality has been
a challenging task, leading to numerous mathematically intricate works. However, in
this context, we should highlight the significant contribution made by Tao and Vu
in their groundbreaking work [20], where they were able to address certain questions
regarding universality. Remarkably, their work builds upon the foundations of the Lin-
deberg Method, showcasing its enduring relevance and applicability in advancing our
understanding of these complex problems.

Consider two independent Wigner Hermitian matrices My and M};. For various
statistics F, E(F(My)) — E(F(M})) should be relatively small. Consider the matrix
My formed from My by replacing either one of the diagonal entries X, of My by
the corresponding entry X ; of My, or one of the non-diagonal entries X; ; of My is
replaced by the corresponding entry X; ; of M}, (and thus X;; by X7 ;). If it can now
be shown that E(F(My)) —E(F(My)) = o(1/n) uniformly when replacing a diagonal
element and E(F(My)) — E(F(My)) = o(1/n?) uniformly when replacing a non-
diagonal element, the Lindeberg replacement approach would show that E(F(My)) —
E(F(M})) = o(1).

In Chapter 2, we introduced a GUE matrix M}, to gradually replace the elements
of the original matrix with Gaussian-distributed elements. Building on that, Chap-
ter 4 suggests that the same result holds for a general matrix M}, belonging to the
same matrix class as My . The key insight provided by Tao and Vu’s fourth moments
theorem is that by matching the first four moments of the matrix entries, we can
achieve the desired convergence. But why specifically four moments?

To understand this heuristic choice, let’s refer back to Chapter 2.1. There, we
assumed that the first two moments of the sum X; with a .#7(0,1) distribution
were matched, and we observed an error of size O(1/N3/2) when exchanging a sin-
gle element. Consequently, performing this exchange n times led to an error rate of
O(1/N*'/2). For each subsequent moment of agreement with .4'(0, 1), we obtained an
improvement in the error rate by O(1/N'/2). Therefore, if we were to achieve agree-
ment up to the fourth moment, replacing a term would introduce an error of size
O(1/N°/?). Since we are replacing approximately N2 terms with matrices, this level
of agreement would be sufficient to obtain an overall bound of o(1). Hence, it is not
surprising that the entries of My and M}, coincide in moments up to the second order
on the diagonal and up to the fourth order off the diagonal.

We first give a precise definition of the correspondence of moments:

Definition 1 (moment matching). Two complex random variables & and &' match to
order k if for every m,1 >0 s.t. m+1 <k,

ERe(€)™Im(£)" = ERe(¢') Tm(¢")". (62)
Definition 2 (Condition CO0). A random Hermitian matriz My = (X; j)1<ij<n 1S

said to obey condition CO if
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® The X, ; are independent (but not necessarily identically distributed) for 1 < i <
J < N, and have mean zero and variance 1.
e (Uniformly sub-exponential) There exist constants C,C’ > 0 s.t.

P(|Xi5] > 1) < exp(~t) (63)

for all sufficiently large t > C' and 1 <1i,5 < N.

Then our main theorem comes.

Theorem 4 (Four Moment Theorem, Tao and Vu [20]). Let My = (X, j)1<i j<n and
My = (X] ;)i1<ij<n be two random matrices satisfying CO. We assume that for any
1<i<j <N, the entries X; ; and X'i, j match up to the fourth order, and for any
1 <i <N, the entries X; ; and Xz(,i match up to the second order. Let Ay = \/NMN
and Ay = \/NMJ'V We introduce a small positive constant ¢y, and for any 0 < e <1
and k > 1, the following condition holds: If G : R¥ — R is a smooth function that
satisfies the derivative bounds

|VIG(z)] < N (64)
for all 0<3j <5 andx € RF. Then for any eN < iy <ip--- <ip < (1 —¢)N, and
for N sufficiently large depending on €, k, we have

IE(G(Aiy (AN);s -+ Aiy (AN))) = E(G (N, (A ), -5 Xiy (AN)) < N7, (65)

An overview of a whole class of various fourth moment theorems can be found in
[20]. We outline the major approach. We form the matrix My of My by taking a
single entry X ;,¢ < j of My replaced by the entry XZ(J of M}, and the corresponding
location Xj;, to keep My hermitian. One important technical observation is that

My is no longer a Wigner matrix because the entries are not necessarily identically
distributed. We look at Ay = vV NMpy and want to proof

E(G()‘Zl (AN)v ) Aik (AN))) - E(G()‘H (AN)v ) )‘lk (AN))) = O(N75/2+O(CO))

We now think Ay = A(X; ;) and Ay = A(Xl']) as functions of X; ; and X; ;. We have
A(t) := A(0) + te;ef +teje}, where A(0) is a Wigner matrix where one entry and its
adjoined entry is zero, e; is the canonical orthonormal basis of CV. Note that Ay is a
matrix amplified with a scale number v/N, so we concern the case t = O(N1/2+o(),
We claim

B(t) = E(G(Ai, (A1), - -+, Xy (A(1))))

And as a result, we want to have

EF(XZJ) — EF(X’:J) = O(N_5/2+O(CO)>
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So the problem turns to that how does the exchange of a matrix element change
its eigenvalue. Suppose that we have Taylor expansions of the form

4
A (A1) = Xy (A(0)) + D e gt + O(n?/2+0(0)) (66)
j=1
for all t = O(n®)) and I = 1,...,k, where the Taylor coefficients c;,; have size

cj = O(n~7/2+0(c)  Then by Taylor expansion and the gradient control, we have

4
F(t) = F(0)+ ) fit! + O(n=?/210())
j=1

for the function F(t), where the coefficients f; have size f; = O(n=7/2+0(c0)). Setting
t equal to X;; and taking expectations, and noting that the Taylor coefficients f;
depend only on F' and A(0) and is thus independent of X ;, we conclude that

4
EF(X;;) )+ Y (Ef)EXE)) + O(n=0/2F00)
k=1

and similarly for EF(X; ;). If X; ; and X ; have matching moments to fourth order,
this gives the result we want.

It remains to establish (66). We abbreviate 4; simply as i. By Taylor’s theorem, it
would suffice to show that

& ; :
T hi(AD) = O(n~7/2+0(c0)y (67)
for j = 1,...,5. There remains some technically great details. This is where the

real difficulty lies and is overcome with the help of Hadamard’s variation formulas.
If \;(A(t)) denotes the i-th vector of an orthogonal base of eigenvectors of A(t), the

following applies:
d

%Ai(A(t» = ui(A(t))*A/(O)ui<A(t)>'
d2 \Uz(A ( Ju; (A(t))|?
a2’ 22 —M(A)

The results on delocalization 1ndlcate that in the last expression, the numerator is
at least of the order O(n~'*°(1)) with a very high probability. However, to evaluate
the denominator, we need to establish that the eigenvalues of My are almost surely
distinct. This relies on the presence of a gap property among the eigenvalues and a
localized version of the semicircle law. It’s important to note that the formulas for
the higher derivatives of \;(A(t)) become significantly more complex in this context.
Details on this have been elaborated in [20].

Using appropriate choices of test functions, Tao and Vu successfully established
that the limit distributions, such as the Tracy-Widom distribution for the smallest
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eigenvalue, observed in GUE matrices can be extended to all Wigner-Hermite matri-
ces. Furthermore, they have made significant progress in deriving other universal
fluctuations, including moderate deviations principles for individual eigenvalues, the
relative number of eigenvalues within an interval, and the determinant of Wigner-
Hermite matrices. While we won’t delve into the specifics here, these advancements
have expanded our understanding of random matrices and their statistical properties.

6 A New Approach in High Dimensional CLT
6.1 Breakthrough in High Dimensional settings

We now consider the case that p is much much larger than n. Xi,...,X,, are inde-
pendent random vectors in R? where p > 3. Assume X; = (X;1,...,X;p), every X; is
centered and IE[X%] < oo for all 4,j. Consider the normalized sum

1 n
S = (S S = == Y X 68
n ( nls ’ np) \/ﬁ P ( )
Let Y7,...,Y, be independent centered Gaussian r.v.s in R? s.t. every Y; has the same
covariance matrix as X;. Similarly,
1 n
Y ._ (qQY Y\ E : g
Sn T (Snla"'v‘snp) T ﬁiZI Y; (69)

We consider bounding the below quantity as a distance of distribution

pn(A) = sup [P(S;" € A) —P(S, € 4)], (70)
AcA

where A is a class of Borel sets in RP. There has been extensive research on bounding
pn(A), with a particular focus on explicitly capturing the dependence on p in the
bounds. The main interest lies in understanding the rate at which p = p,, — oo can
grow while ensuring that p,, (A) tends to zero. In particular, Bentkus [2] established one
of the most well-known results which says that if X3,..., X, are i.i.d. with E[X,;X]] =
I,
E[[| X1 %]
\/ﬁ Y
where Cj,(A) is a constant depends only on p and A. In a sense, this can be seen as
a high-dimensional counterpart of the Berry-Esseen Theorem. However, what often
frustrates and confuses us is that the best classical results only hold when p grows at
most polynomially with respect to n. Breaking through this limitation, Chernozhukov
et al. in [7] made significant progress in overcoming the so-called ” curse of large dimen-
sion.” They demonstrated in their paper that Gaussian approximation is achievable
for normalized maximum statistics, even when log(p) grows at a polynomial rate with
respect to n.

pn(A) < Cp(A) (71)
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For the sake of brevity, we will focus mainly on the core conclusions, leaving most
of the remaining theorems unmentioned. We think the key lemma of [7] is of vital

importance.
Define
on:i= sup |P (ﬁSff +v1—-0SY < y) — P(SY <y, (72)
yERP,v€E(0,1]
where the r.v.s Y7,...,Y,, are independent of the random vectors Xy, ..., X,, and

recall that M, (¢) := M, x(¢) + M, y(¢) for ¢ > 1, where

| 3 .
Max(6) = D e 11 e X1 > Vi/oogp) ] (73

Obviously p, is a specified version of g,, and our lemma derives a tight bound of p,,.
Theorem 5 (Key Lemma). Suppose that there exists some constant b > 0 such that
nty ]E[ij] >b forallj=1,...,p. Then g, satisfies the following inequality for
all p > 1:

logl/Qp
¢

¢°log” p
on S Tz {¢Ln9n +Ln 10g1/2p + ¢Mn(¢)} +

up to a constant K that depends only on b.

The proof is based on the Slepian-Stein method proposed in [6], which improves
upon Lindeberg’s method. This improved method is commonly applied to high-
dimensional Gaussian approximation problems. However, the original idea, swapping
one variable for another in high-dimensional settings does not lead to a precise bound,
because intuitively this may spend a lot of steps. Therefore, we introduce parameters
to interpolate between the variables and analyze their behavior as the parameters vary
between 0 and 1. The Taylor expansion is a natural way to bound the difference, in
which we only keep one term, leveraging the independence property and considering
the local behavior of the random variables. We believe that this idea is related to the
classical Lindeberg method, as the leave-one-out method is originally derived from
Lindeberg’s work.

Let Wy,...,W,, be a copy of Yi,...,Y,. We may assume that Xi,...,X,,
Yi,..., Y, and Wy,..., W, are independent. Consider S}V := n=1/23"" W;. Then
P(SY <y) =P(SY <y), so that

on=sup [P(VoSy +V1-uS) <y)-P(S, <y)l. (74)

yERP,ve(0,1]
For any y € RP and v € [0, 1], we choose (8 := ¢ logp, and denote

on=sup [P(VoSS+VI-0vS) <y)-P(S) <yl (75)
yERP vE[0,1]
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The function Fg(w) satisfies the property below, which means that Fz is a good
approximation of maximum:

0 < Fg(w) — 1r£1]aé(p(wj —y;) < B tlogp = ¢, for all w € RP, (76)
Actually, the construction of Fjg comes from statistical physics where it comes from
the free energy of a spin-glass system.

Next, we select a smooth approximation function go : R — [0, 1] and define it such
that go(t) = 1 for t < 0and go(t) = 0 for t > 1. We further define g(t) as g(t) := go(¢t),
and

m(w) := g(Fp(w)), w € RP. (77)
We notice that m is exactly a version of the smooth approximation of the indicator of
maximum. And the [; norm of thrice derivative of m can be bounded well:

S i min(w)| S (8% + 68 + 65°%) < 82, (78)

Imk(w)] S Imjr(w + )| S [mjri(w)], (79)

where the inequality (79) holds for all w, w € RP with max<;<p [0;|5 < 1. Define the
functions

h(w,t) :=1 {¢1 —t/B < max (wj —y;) < ¢! th/ﬂ}, weRPt>0, (80)
1<j<p

1
w(t) = ———, t € (0,1).
The proof consists of two steps. In the first step, we show that
¢*log”p
EIZ]| S g (0Lugn + Lulog"*p-+ M, (0)) 1)

where Z,, = m(y/vSX + V1 —0SY) — m(SY¥). In the second step, we use anti-
concentration inequality together with the above bound to complete the proof.

Step 1. Consider the Slepian’s interpolant Z(t) := Y7, Z;(t), t € [0,1], where

Zi(t) == % {ﬁ(ﬁxi FVI oY) + VI tWi} . (82)

Obviously,

T, = m(vuSy + V1 —0vSY) —m(S)) = /1 dm(Z(®)) (83)

0 dt
We denote Z()(t) as the remaining term for Z(t), i.e. Z0)(t) := Z(t) — Z;(t). Finally,
define

Zi(t) = % {ﬁ(ﬁxi VI oY) + VI tWZ—} . (84)
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as a type of its derivative.

Now, by chain rule and Taylor Expansion, we have

(85)
j=11i=1
where
p n 1
I=>%" / E[m;(Z")Z,;dt, (86)
j=14i=1"70
p n 1
1= >3 | Emj(Z2D)Z;Zi)dt, (87)
G k=11i=1"0
Poon el ol .
II1 := Z Z / / (1 — 1) E[m; (29 + 72:) Zij Zir Zar)drdt. (88)
Gk g=11i=170 JO

Due to the independence of Z(® from the centered Zij variables, we have I = 0.
Similarly, using the independence and the assumption of the same second moment,

we find that I1 = 0. Thus, it is enough to bound I71. To achieve this, we employ a
truncation technique, which allows us to complete the proof. Denote

Xi i = l{max |Xij|\/ |Y;j|\/|WZ]| < \/ﬁ/(ﬁlﬁ)}, 1=1,....n
1<j<p

and I1I = II1, + I1I,, where

p n 1 1
IIn =y Z/ / (1= 7E[ximju(Z9 + 72,) Zij Zin Zy)drdt, (90)
jki=1i=170 JO

p n 1 1
L= Y Z/ / (1= 1E[(1 = x))mju(ZD + 72:) Zij Zi. Zu)drdt.  (91)
jk=1i=170 JO

(89)

For 1115, we have some insights that it should be bound by some tail expectations,
then

[IT15| < (M, x(6) + Moy (9))88% /n'/? = M, ()% /n'/2.

(92)
To bound I11;, we use another truncation to control the term of 7Z; in m;, which

is rather tricky and we suggest the reader see [7] as a reference; we split the integral
again and conclude that

5Ly, - *log”p
1T S 2 (00 + 67 082 p) S ©8 P (6L 00 + Lo log' 2 ),

(93)
where 8 = ¢logp.
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Step 2. This is a much shorter and easier step. For V;, := /oSX + /1 —vSY,

P(Vop <y—0¢~1) <P(Fs(V) <0) <E[m(V,,)]
<P(Fp(S)Y) < ¢71) + (EBlm(Va)] — E[m(S)))))
<P(S)Y <y+¢ ")+ |EL]|
<P(S)Y <y—¢7)+Co " log'? p+|E[Ll,

the last inequality is also because of the anti-concentration result. It is similar to the
other direction. After collecting all these inequalities, we derive this result. O]

Now we can derive some application results by using this lemma. By specifying a
particular property of Xj;, such as being uniformly bounded in a sub-Gaussian sense,
we can obtain more specific convergence rates. Meanwhile, this result can be extended
from the class of hyperrectangles to other classes. We consider classes of simple convex
sets and derive bounds that are similar under certain conditions. Although it is not a
real challenge to extend the results to simple convex sets, the size of this class in high-
dimensional spaces is significant. By considering sparsely convex sets as well, we can
obtain similar bounds. These classes can be beneficial in statistics, as sparse models
and techniques have played a crucial role in recent years. Also, due to the convenience
of calculation, this result can be similarly extended to Bootstrap cases, which needs
more techniques but leads to some reliability of data-dependent methods.

6.2 Randomized version of Lindeberg Replacement

Chernozhukov, etc. did not stop there but continued to make further contributions
to strengthen the rate of this estimation. In this section, we will discuss this iterative
randomized Lindeberg replacement method developed in [8], which to some extent,
improves the existing estimation rate and also extends to more classes of bootstrap
methods.
We first introduce what is the meaning of iterative randomized Lindeberg method.
Define
0c = sup [P(Sy. <y) —P(S7 <y)
yeRP

; (94)

where
1 &« 1 &
57‘1/6:7 61‘/1+ 1_61' Zz and 35:7 Zz
: \/ﬁ;( ( )Z;) \/ﬁ;

To analyze the problem, we employ a random process in 0,1™, which is composed of
€Y,...,eP €0,1". These vectors are independent of Z and V and we seek to establish
recursive bounds for p.a for d = 0,..., D. In order to construct such a sequence of

random vectors, we follow these steps:

e We first choose D = [4logn] + 1, which determines the number of steps to use. We
initialize € = (1,...,1).

® We generate Uy, ...,Up as independent and identically distributed uniform random
variables on the interval [0, 1] and independent of Z and V’s.
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e Given ¢! and Uy,...,Up, we set e =0if ed 1 = 0, and generate €% E I;_1 using

K2
iid. Bernoulh(Ud) random Varlables where Id,l ={i=1,...,n: f = 1}. This
process is regarded as one step of replacement.

Obviously, €? has these properties:

(i) foreveryi=1,...,n, el =0 ife;.i*1 =0;
(ii) for Iy—y = {i =1,...,n: effl = 1}, {€?}ie1, , are exchangeable conditional on
1 and satisfy

1
d_ -1 _ _
P E € =sle€ 7S for all s =0,...,|I4-1] (95)

i€lg_1

which is a classical result from some Bayesian viewpoints.

The recursive inequality is established by linking SV 2 With SZ using the random-
ized Lindeberg method, first introduced by [9]. In contrast to our prior work in [7],
where we employed the Slepian-Stein method to connect SX:eO with G, the randomized
Lindeberg method enables matching of moments up to the third order for both S’Ked

and SZ. This results in an improved power of log(pn), leading to a more substantial
increase in the sample size n.

We always assume V and Z to be independent centered r.v.s in RP. Also, some
technical conditions are stated. For example, for every component, the mean of the
fourth moments of V' and Z should be uniformly bounded. Also, they should be
uniformly sub-Gaussian as well as Z have some properties like anti-concentration
results.

Theorem 6. Suppose that some mild conditions are satisfied. Then for every d < D
and ¢ > 0 s.t.

CpBuplog®(pn) < v/n, (96)
restricted on Ayg,

Viogp BZ¢*log’ (pn)
O¢d S/ + 5 + T

n (E[gew ] 4 Y 6)

¢
3 2 2 44 3
% < 1d¢ log p i Br.2,a¢” log” p N B2¢*log (pn))’
n n
Ad:{li?f}?ép Z wk z]k) <Bn1d}
ﬂ {1<r},1’?:)l(<p Z Jkl zjkl) < B2 d}

The intuition behind the iterative randomized Lindeberg method can be explained
as follows. When approximating E[g(X; + --- + X,,)] using E[g(Y1 + --- + Y},)], the

Where
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traditional Lindeberg method constructs an interpolation path where X;’s are replaced
with Y;’s one-by-one in a given order. The method then utilizes Taylor’s expansion to
demonstrate the small change in expectation due to each replacement. On the other
hand, the randomized Lindeberg method, introduced in [9], replaces X,’s with Y;’s
in a randomly selected order, leading to significant benefits in the final bound. To
enhance this approach, we examine the coefficients of Taylor’s expansion and apply the
randomized Lindeberg method again for further approximations. This iterative method
introduces new coeflicients, and the process is repeated until the approximation error
reaches an acceptable level. Our research demonstrates that the iterative randomized
Lindeberg method significantly improves the final bound. We provide a comparison of
this method with the randomized Lindeberg method presented in [9] and the Slepian-
Stein method used in [6, 7] in advance of Lemma 6.

And after this, we have our main result which shows some improvement of the
convergence rate:
Theorem 7 (Distributional Approximation via Iterative Randomized Lindeberg
Method, [8]). Under mild assumptions, if

< CpBpy/log(pn) (97)

—= DBV, Vi ~ Bl Zu)

max
1<j,k<p

and

< G B}/ log®(pn) (98)

max
1<j,k,l<p

1 n
7 > (EIVi;VieVa] — E[Zi; Zir Zul))
i=1
for some constant C,,. Then

n n 5 1/4
P(\/lﬁ;%<y>—P<\/lﬁ;Zi<y> <C<<B72110i(pn)> +5>7

where C' is a constant depending only on our assumptions and C,,.
The proof of this theorem is rather tricky. We use some kind of induction and the
reader can see [8] for more detailed proof.

sup
yERP

6.3 Optimal Rate for High-Dimensional Settings

We have reached some near n~'/4 rates. For some possible developments, we know
that generally, the n~1/2 rate in the classical Berry-Esseen theorem is optimal. And
Lopes in [17] modified the result to get this optimal rate in Gaussian approximations.
The utilization of smoothing techniques plays a pivotal role in the proofs. These
techniques involve the use of a smooth function ¥ : R? — R that is dependent on a set
A C RP, such that E[¢)(B,,)] = P(B, € A). While these techniques are crucial, they
come with the disadvantage of introducing an additional smoothing error [P(B,, € A)—
E[¢(B)]|, which needs to be balanced with errors arising from other approximations.
Often, this balancing process becomes a bottleneck for the overall rate of Gaussian
approximation, and finding appropriate trade-offs can be challenging.
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To tackle this challenge, we utilize a smoothing function introduced in the Lin-
deberg interpolation framework, which avoids introducing any additional smoothing
error. This approach assumes that X1, ..., X, are non-Gaussian, while Y7,...,Y,, are

Gaussian. It takes into account the probability P(Zle Xi+ ) 11 Y € A), which

can be expressed as IE[J}(ZL X;)], where ¢ is a specific smooth random function
defined with respect to Yjiy1,...,Y,. This smoothing technique shares some similar-
ities with the method proposed by [3], where the cumulative distribution function of
the normal distribution was employed to create an exact and unbiased approximation
of the difference. The resulting estimation requires that each component of X is uni-
formly sub-Exponential or sub-Gaussian. For brevity, we will focus on the case where
they are uniformly sub-Exponential.

We introduce this main theorem:
Theorem 8 (Optimal Gaussian approximation, Lopes [17]). There is an absolute
constant C > 0, s.t. the following holds for all n,p: Let X1,...,X, € RP be centered
i.i.d. rou.s, and vy = maxi<j<p || X1, /v/var(Xa;) |y, is finite. Let p be the smallest
eigenvalue of the correlation matrix of X1, and p > 0. Y € R? be the Gaussian version
with E[YY "] = E[X, X ]. Then,

’ < Cl/glogG(pn) log(n)

sup ]P’(ﬁ Yo Xi€A)—PY € A) 03721/ )

Aex

(99)

Sketch of Proof. Denote Sg.x/(X) = n~'/2(X + - + Xi) and similar for Y, where
they are i.i.d. copies of X, and

Dk = sup [P(S14(X) € 4) — B(S1x(Y) € 4) (100)
AeZ

as well as

6 (4) = P(S1h-1(X) + o Xi + Ski1n(V) € A) = P(S1-1(X) + Siran(Y) € 4)

(101)
as well as for Y, So
P(S1:n(X) € A) = P(S1n(Y) € A) = D {5 (4) — 5} (A)}. (102)
k=1
Then define
8, = sup |07 (A) — o (A), (103)

AeR
The proof of the major theorem is quite complicated, and we suggest the reader
to see [17] for further reading.
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The key is to bound d, and thus, to bound their sum; in fact, the major lemma
says for every n >3, p>1,and k € {2,...,n — 1},

cv3(lo % n
5 < %(ek log(pn), /225 + Di_1 + p%) (104)

Here we estimate d; by implicit smoothing. To know what exactly this term means,
denote { ~ N(0, I,) and for any fixed s € RP, A € #Z, and € > 0, define

(s, A) =P(s+eC € A). (105)

Actually, ¢.(-,A) is a smoothed version of the indicator s — 1{s € A}, when €
tends to 0. Next, for each k =1,...,n — 1, define

e =1/ =2 (106)

We use €, to decompose the Gaussian r.v. Sky1.,(Y) that

Spr1n(Y) = aVipr + /EEWey, (107)

where Viy11 ~ N(0,1,) and Wiy ~ N(0,R — pI,,) are independent with X and
Gaussian r.v.s, and we know all eigenvalues of R is larger than p. Now defined

Ay ={a- \/@W,m‘x e A}, (108)

then it’s easy to see that
P(S1(X) + Sksrn(Y) € A) = E|oe, (S1x(X), Arsn)|- (109)

which means ¢, is an unbiased version of smooth approximation on the randomly
shifted set. As a result,

0¥ (4) = B[, (Stn-1(X) + FeXe Arin ) = o (Sta-a(X) Ak )| (10)

By Taylor’s Theorem, we can split the above into three parts, and the first and
second moments agreed, by independence, we can subtract Y’s version from it and get

5X(A) 6 (4) = E[RY(A)] — E[R) (4)]. where

—T 2 T N —_
RkX(A) = % <v3(p€k (Sl;k_l(X) + ﬁXkaAk—&-l)a n 3/2X§3> (111)

with 7 Uniform on [0,1] and independent of all others. Therefore, §; <
sup ac E[|RX (A)|] + sup ez E[|RY (A)|], and we use Holder’s inequality to bound

sup e E[|RX (A)|]. Actually, this turns to consider the event Ej(e),) = {Sl:k—l (X) e
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clog®?(p)
63

814;€+1(6k)}. We know sup s ayerr xz |V3¢e, (5, A1 < is a global bound,

so on the event Ej(eg), it turns to bound some tail expectation of X. This can turn
to anti-concentration and sub-exponential results. Besides, outside the event Ej(eg),
the gradient can be relatively small:

sup { [V, (s, A) 1 | A € # and s € (R?\ 9A() | < 5.
k
Combining the two cases, we get the bound for d;, and we can see that it can be
dominated by some term related to Dy _1, so the induction hypothesis can be used; it
turns to control some sum, and we can choose a proper m to get an optimal bound
for D,,. Detailed proof can be found in [17].
O

Our exemplary bound provides significant implications, such as utilizing it to per-
form inference on mean vectors or refining the precision bounds of numerous bootstrap
methods. This is of paramount importance, as the accuracy of such procedures is cru-
cial in ensuring the validity and reliability of statistical analyses. By leveraging our
efficient bound, researchers can have greater confidence in their results and draw more
accurate conclusions from their data.

7 Other Interesting Results: CLT of Random Sum

In this chapter, we describe further results derived from the Lindeberg Replace-
ment Method. We look at the situation from Chapter 1 again and look at partial
sums of independent and not identically distributed random variables, where now the
number of summation terms is random. The fact that the limit distribution is not
restricted solely to the Gaussian distribution piques our interest. These findings can
potentially be applied to real-life problems, such as finance, economics, and risk man-
agement, where the underlying assumptions are not strictly Gaussian and require a
more comprehensive understanding of the limit distribution.

Assume there are independent centered random variables X; with o? = E(X?) <
oo. Furthermore, N is a random variable with values in N with Var(N) < oo, and
it is chosen independently of the sigma field o(X; : i € N). We are interested in the
randomized partial sum

1 N
Wy = > X (112)
i=1

JEB?

SN

where B2 := vazl o2

Random partial sum is a much-studied object in probability theory. They occur
in the theory of branching processes, models of mathematical biology, as well as in
economics and risk theory.

For example, If N,, is about the number of male offspring in the n-th generation,
and if the j-th of these offspring has X;nH) sons, then N, = Zfi"l Xi(”'H). Then
it is called a Galton-Watson trial. Under what conditions at the moments of X; and
N can convergence in distribution be demonstrated and will a central limit theorem



apply? In order to somewhat simplify the arguments, assume o7 = 1 for all 4, then
EB2 =EN.

We then examine the limit distribution of Wy = \/ﬁ Zf\il X;. If the Z; are
again independent .4(0, 1) distributed random variables, independent of N, we inves-
tigate E(f(Wy) — f(Z\N))) using Lindeberg’s sum decomposition, where Z(V) :=
Nix SN, Z:). But now we do not know the distribution of Z("). For what N, the

limit of Z(™) is normally distributed? For each test function f chosen as in Chapter
2, below is followed by conditional expectations

E(f(Wx) = f(Z0) =Y P(N = n)E(f(Wa) — £(Z2™)) (113)

neN

Therefore, [E(f(Wy) — f(ZN))| < Ty + Ty, where

Ty <2KeY B(N =n)" = 2Ke (114)
n>1 K
and
K n
T, <=> P(N=n) Z(/ X7dP + / Z}dp) (115)
H n>1 i—1 J1Xil>eym |Z:|>e/IE

As for the i.i.d. case, we can especially derive

T, < K(/ Xidp +/ Z3dP) (116)
[ X1]|>ey/1 |Z1|>e/10

To control 75 on an arbitrarily small scale, we need to let the event {|Xi| > e,/ii}
tend to a null event monotonically. In other words, when p = EN — oo, we can have
a similar limit result for random partial sums. It is not surprising that we examine a
random sum of N summands since the expected number of summands would increase
as in our classical limit analysis. In more general cases, by Fubini’s Theorem, we have

K
T<—) P(N> Z')(/ X7ap +/ Z2dp) (117)
K i>1 | Xi[>ev/ |Z;|>e/ It

So it needs to become small while EN — oo. However, for non-identically distributed
cases, we note the scalar term of Wy and Z(") should be changed into E(B2). In order
to find some consistency with the i.i.d. case, we assume lim,,_,, % Z?:l 0? = 02 with
some o > 0. In this case, the increasing rate of E(B2) to EN is asymptotically fixed.
As well as for T7, we need to mention that

no g2
Ty gzKeZIP(N:n)M (118)

n>1 K
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So there must exist some M > 0 s.t. T3 < 2KeM. To sum up, we get the following
theorem, which should be thought as a simple conditional version of the primitive
Lindeberg’s result:

Theorem 9. Suppose there are independent centered random variables Xy, --- with
o? := EX? > Ofor each i, and Zy,--- be some independently Gaussian copies with
Z; ~ N (0,02). Furthermore, N is a random variable with values in N, independent
of all other elements with EN — oo. Suppose lim,,_, o, % DOy 0? = 02 and Lindeberg
condition holds for every e > 0:

1
— Y P(N> i)(/ X2dP + / Z2dP) — 0 (119)
AN i>1 |X:|>eVEN |Zi|>eVEN

Then with our above definition of Wx and ZWN), we have
E(f(Wn) = f(ZM))] =0 (120)

Due to the ubiquitous of its application, the case of a geometrically distributed
random variable N was always considered. Geometric distribution means if P(N =
n) = (1—p)"!p for some 0 < p < 1 and n € N. In the model of the independent coin
toss, this is the probability that success occurred for the first time at time n. It applies
E(N) = 1/p and Var(N) = (1 — p)/p*. So we look at the case p — 0 to find a limit
for the distribution of Wy. Since P(N > i) = (1 —p)*~!, the Lindeberg condition 119
here is:

lim » (1— p)i—lp/ X2dP =0 (121)
P20 i>1 | X5 |>ep=t/2

In [18] it was further shown that 121 applies to the normally distributed Z; if one
additionally demands that lim, ;. n~ Y02 = 0 applies to a 0 < v < 1. Especially, if
we consider the case of identically distributed random quantities X; with o7 = 1, then
it follows immediately that |E(f(Wx) — f(Z))] — 0.

In [18], it was shown that the limit of the characteristic function E(exp(itZ(N)))
when p — 0 is 1++2/2 The characteristic function of a distribution clearly determines
itself, and we can see the limit distribution with this specified characteristic function
has the density

f(2) = = exp (—v2lx]) (122)

V2
We call this a Laplace distribution.

The possible class of limit distributions is described by means of the characteristic
function of Z() as follows. If Z; ~ .4(0,07) are independent, E(exp(itZ(N))) =
Y51 P(N = n) exp(—%Bﬁ), and B2/n — o2, it’s easy to see the characteristic
function converges to 14—0%7/2’ which represents a scaled Laplace distribution.

It’s quite an amazing result, for if N is deterministic, i.e. there exists some ng s.t.
P(N =ng) = 1, then Z") is normally distributed. For any random variable N with
values in N, we do not have this information, and other limit distributions may occur,
as we have shown above. But we can still take conditional expectation on N and use
some similar approach like Lindeberg’s. That’s the charm of this method!
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Fig. 2 PDF of a Laplace Distribution

The Lindeberg method was thus successfully presented for a non-central limit
theorem. This remains an indication that why a geometrically distributed number of
summands does not have a central limit set. The variance of the number of summands
s (1 —p)/p* and thus grows for p — 0 faster than the expected value. The variation
of the number of summands is therefore too large to allow a central behavior in the
sense of a central limit theorem.

Finally, in the case of random partial sums Wy, we can also derive convergence
rates from the Lindeberg proof. For the situation of independent and identically dis-
tributed X;, we denote @ = E|X;|> < co and again consider only the case 02 = 1.
Using this to estimate g and similarly, we have

(67

\/IW) (123)

1/2

E(f(Wn) — f(Z2))]| = KO(

In the case of geometric sums, the convergence rate is p'/“ therefore.

8 Conclusion

This paper provides a comprehensive overview of the Lindeberg Method, a technique
used to prove the central limit theorem. The method was developed by H. C. Lindeberg
in a series of papers in the 1920s, and has been widely used due to its simplicity
and versatility. The paper first provides an introduction to the central limit theorem,
which describes the behavior of collections of independent and identically distributed
random variables. It then goes on to describe the history and development of the
Lindeberg Method, which has been applied in various fields including random matrices
and high-dimensional Gaussian approximations.

In addition to introducing key concepts and applications of the Lindeberg Method,
the paper also explores recent advancements in the field. These developments have
broadened the scope of the method and opened up new research directions. We
especially consider Chernozhokov’s breakthrough of Gaussian Approximation in High-
Dimensional settings. Overall, the paper is a valuable resource for researchers and
students in probability theory, statistics, and related fields who seek to develop a
deeper understanding of the central limit theorem and the Lindeberg Method.
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